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ABSTRACT

We tackle the problem of image inpainting in the remote sens-
ing domain. Remote sensing images possess high resolu-
tion and geographical variations, that render the conventional
inpainting methods less effective. This further entails the
requirement of models with high complexity to sufficiently
capture the spectral, spatial and textural nuances within an
image, emerging from its high spatial variability. To this
end, we propose a novel inpainting method that individually
focuses on each aspect of an image such as edges, colour
and texture using a task specific GAN. Moreover, each in-
dividual GAN also incorporates the attention mechanism that
explicitly extracts the spectral and spatial features. To en-
sure consistent gradient flow, the model uses residual learn-
ing paradigm, thus simultaneously working with high and
low level features. We evaluate our model, alongwith pre-
vious state of the art models, on the two well known remote
sensing datasets, Open Cities AI and Earth on Canvas, and
achieve competitive performance. The code can be referred
here: https://github.com/advaitkumar3107/RSINet.

Index Terms— Image inpainting, remote sensing, gener-
ative adversarial networks

1. INTRODUCTION

Image inpainting is the process of filling in the missing part
or conserving the damaged and deteriorated image (which
can be physical or digital). Digital image inpainting is an
important problem statement in the field of computer vision
which has applications in various domains such as restoring
damaged images/videos, remote sensing, object removal, text
removal, automatic modifications of images/videos, image
compression and super resolution [1]. The drawback of the
traditional mathematical methods is their low PSNR on com-
plex images such as remote sensing images [2]. Remote sens-
ing images have a variety of boundaries, objects and colours
which makes it a semantically tougher problem. Hence, deep
learning has been introduced earlier to tackle this challenge
such as in [2], which solved three missing information tasks
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in remote sensing data using a deep convolutional network
combined with spatio-temporal information.

There have been several image inpainting approaches as
well, such as [3], which used a UNet based encoder-decoder
structure coupled with residual learning to compute the gradi-
ents effectively for image restoration. [4] proposed a new type
of layer called ‘partial convolution’ (PartialConv) to improve
the current best performing image inpainting models. [5] pro-
posed the EdgeConnect (EC) model, that initially builds up
the outline of the image to be restored and then fills it with
details. Furthermore, to ensure the relationship between the
neighbouring areas and entire image as a whole, [6] proposed
a multi GAN approach, that trains a global as well as a lo-
cal discriminator (GLCIC) on top of their VGG-type model.
Moreover, [7] proposed a global and local attention based
model to tackle the issue of image irregularities such as holes.
In addition, to preserve the semantic style of the original im-
ages, additional loss functions have been explored. For in-
stance, [8] introduces style loss, where the textural features
are synthesised from the images, which assist in the style
transfer. [9] introduces perceptual loss for super-resolution,
(instead of pixelwise loss) and get high resolution images.

In the aforementioned methods, even though the meth-
ods seemed to perform better individually on the task specific
images, they could not prove much effective on the images
with high spatial variation such as those from remote sensing
domain. This is because each of the individual models was
designed to focus on a specific aspect of the image such as
colour, edge or texture. Hence, there arises a need to have
a common model that simultaneously works with all the im-
age aspects and leads to more accurate image restoration. In-
spired from this notion, we propose an image inpainting ap-
proach that utilizes multiple GANs to effectively capture the
different aspects of the image. In addition, to handle irregu-
larities of the image defects, Convolutional Block Attention
Module (CBAM) [10] and the Gated Attention Layers [11]
based attention modules are added. The GANs are reinforced
with skip connections to ensure a consistent gradient flow.
Moreover, to preserve the semantic style of the images and
get more robust representation, we incorporate a cocktail of
adversarial, style and perceptual loss. Our approach is sum-
marised below:
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Fig. 1: Architecture of our proposed GAN. The Generator consists of an encoder-residual blocks-decoder structure. The encoder has a skip
connection as well as feature maps that serve as a gate for the gated attention layers. The discriminator consists of 6 convolutional layers that
successively downsample the input into a 28 × 28 probabilistic grid.

1. We introduce a model that combines the characteristics
of edge detection GAN, colour filling GAN and global
GAN to focus on the different image aspects.

2. We introduce attention layers for guided backpropaga-
tion to get more robust spectral-spatial representation
and increase the sharpness of the images. We also in-
clude style and perceptual losses with the adversarial
loss to capture the semantic information of the images.

3. We train our model on the Open Cities AI [12] and the
Earth on Canvas [13] datasets where our model outper-
forms the existing deep inpainting models by at least
0.06 % and 2.24 % respectively.

2. MODEL DESCRIPTION

In this section we discuss our proposed model. It consists of
three GANs trained on top of each other, namely, the edge
completion GAN G1, colour filling GAN G2 and the global
GAN G3. We describe the loss functions and the architecture
used for the basic GAN unit in detail in the subsequent sec-
tions. The GAN architecture used in RSINet is presented in
Fig. 1. All the GANs follow the similar architecture.

Let Igt be the groundtruth image and, Cgt and Igray be
the groundtruth edge map and grayscale image respectively.
In the generator for G1, we use the masked grayscale image
Ĩgray = Igray ⊙ (1 − M), its masked edge map C̃gt =
Cgt ⊙ (1 − M) (⊙ being the Hadamard product), and the
image masks M as the pre-condition (proposed in [14] as in-
put to pix2pix GAN, where 1 and 0 denote the masked region
and the background respectively). The generator produces the
completed edge map for the image (see Eqn. 1).

Cpred = G1(Ĩgray, C̃gt,M) (1)

We use Cgt and Cpred conditioned on Igray as the input to the
discriminator, which predicts whether or not the edge map is
real. This predicted edge map is then passed on to the colour
filling model (Eqn. 2). The colour filling model uses the
masked RGB image, Ĩgt = Igt⊙ (1−M), conditioned on the

completed edge map Ccomp = Cgt⊙(1−M)+Cpred⊙M , as
taken from the previous model. The model outputs the com-
pleted RGB image with the right colours filled at the right
places.

Ipred = G2

(
Ĩgt, Ccomp

)
(2)

G1 and G2 individually gave blurry outputs on the tougher
satellite images. Hence, we train a global GAN G3 (Eqn. 3)
on top of the output from the colour filling model which re-
fines the output and makes the images sharper. This was based
upon the suggestion that using the same encoder-decoder ar-
chitectures for image inpainting gave better results since both
the models learnt the same features semantically [15].

Irefined = G3(Icomp, Ĩgt) (3)

2.1. Loss Functions

The edge completion model is trained the adversarial loss [14]
and the feature matching loss [16]. Adversarial training is
thought of as a min-max game between two players. Here,
the generator tries to ‘fool’ the discriminator, i.e. make the
discriminator predict with a high probability that the genera-
tor’s output belongs to the input data, while the discriminator
is trained to differentiate between the original and the gener-
ated samples. The adversarial loss is given in Eqn. 4.

Ladv = E
Cgt,Igray

[log D1(Cgt, Igray)]+

E
Igray

[log(1−D1(Cpred, Igray))]
(4)

In Eqn. 4, D1 is the discriminator for edge completion GAN.
The feature matching loss, LFM compares the activation

maps in the intermediate layers of the discriminator. This
is similar to perceptual loss [9] (used in the colour filling
model), where activations are compared with those from a
pre-trained VGG network. However, a VGG network is not
trained to produce the edge maps, so we use the LFM instead
of the Lperc here. The LFM is in Eqn. 5 defined as :

LFM = E

[
L∑

i=1

1

Ni

∥∥∥D(i)
1 (Cgt)−D(i)

1 (Cpred)
∥∥∥
1

]
(5)



Here L is the number of layers in the discriminator. Ni

is the number of elements in the ith convolutional layer and
D(i)

1 is the activation in the ith layer of the D1.
The colour filling model is trained on 4 losses. The adver-

sarial loss, L1 loss [17], style loss [8] and perceptual loss [9].
To ensure proper scaling the L1 loss is normalized by the
mask size. The adversarial loss is similar to the previous
model. The perceptual loss gives the L1 distance between the
activations from a few specific layers of a pre-trained network
as well as our model (Eqn. 6).

Lperc = E

[∑
i=1

1

Ni
∥ϕi (Igt)− ϕi (Ipred)∥1

]
(6)

Here ϕi represents the activation map of the ith layer of the
pre-trained VGG19 network.

Style loss returns the differences in covariances of these
activation maps by constructing the gram matrix from the ac-
tivation maps. Given the feature maps of sizes Cj×Hj×Wj ,
style loss is computed in (Eqn. 7).

Lstyle = E
j

[∥∥∥Gϕ
j

(
Ĩpred

)
−Gϕ

j

(
Ĩgt

)∥∥∥
1

]
(7)

Here Gϕ
j is the gram matrix constructed from activation maps

ϕj . The global GAN model is also trained on the weighted
sum of the 4 losses as discussed above, namely, Ladv , Lperc,
L1 and Lstyle. The final loss for RSINet is given in Eqn. 8.
The value of λ1, λ2 and λ3 is empirically fixed to 1 during
implementation.

Lfinal = Ladv + λ1L1 + λ2Lperc + λ3Lstyle (8)

3. EXPERIMENTS

The model has a VGG type architecture [18] (an encoder fol-
lowed by a decoder). The encoder part consists of 3 convolu-
tional layers each successively halving the image dimensions
and doubling the number of channels, followed by 8 residual
blocks and finally 3 convolution layers again. This converts
the feature representation of the residual blocks back to the
image size (the output). A skip connection (consisting of 2
layers) has been added to the second convolutional layer of
the network. We have also added 3 gated attention layers in
between, for further refinement of the feature maps.

3.1. Datasets

We worked primarily with two famous satellite imagery
datasets. The first one is the Open Cities AI challenge
dataset [12], which consists 500 randomly sampled images
size of 1024×1024, divided into 16 images of size 256×256.
The second one is the Earth on Canvas dataset [13] which
consists of 1400, 256×256 images from 14 classes. It is
highly uncorrelated and a good test for our model’s perfor-
mance. Both the datasets have been divided into 60%, 20%
and 20% ratio for train, validation and test sets respectively.

3.2. Protocol

We kept the parameters for the global GAN similar to those
of colour filling GAN. Adam optimizer [19] is used for train-
ing all the models, with learning rates of 10−3 and 10−4 for
generator and discriminator respectively. For evaluation, peak
signal-to-noise ratio (PSNR) is used. For the GLCIC model,
its 160×160 output was interpolated to 256×256 while com-
puting the PSNR.

Table 1: Accuracy analysis for irregular masks on Open Cities AI
and Earth on Canvas datasets for different methods

PSNR (DB)
Model Name Open Cities AI Earth on Canvas
EC original [5] 37.113 33.145
EC (our model) 37.433 33.784
Only colour filling GAN (our model) 30.347 31.198
PartialConv [4] 35.912 31.246
EC+Global GAN (our model) 37.456 34.542

3.3. Discussions and Critical Analysis

The performance for all the models is presented in Table 1. It
is visible that our model outperforms all the models for Open
Cities AI dataset (PSNR 37.456) and Earth on Canvas dataset
(PSNR 34.542).

We also deal with 3 types of ablations; rectangular masks
wherein a random rectangle of the input image was replaced
with white pixels, covering between 5%-30% of the image
area during training, salt and pepper masks where, random
image pixels as sampled from a gaussian distribution were
whitened, covering anywhere between 5%-95% of the image
area and irregular masks, as shown in [4]. Furthermore, we
also present the visualizations of inpainting for the different
masks in Fig. 2 for the three kinds of masks. The method has
shown a good performance in reconstructing the images for
all the three kinds of masks.

3.3.1. Effect of Loss Function

As seen from Fig. 3, a mixture of losses works best for
inpainting (presented on Open Cities AI). This hybrid loss
function consisting of perceptual, style, L1 and adversarial
losses for the generator, and feature matching and adversarial
losses for the discriminator performs well for this semanti-
cally tough image inpainting task. Perceptual and style losses
help in improving the quality of the reconstructed image by
capturing image semantics and minimising the difference of
activations in all the layers of the target and the output images.
L1 loss improves the model performance due to its high noise
robustness. Feature matching loss used in the discriminator
helps to keep the GAN stable and prevent mode collapse.



Fig. 2: Inpainting results on Earth on Canvas dataset with (a) rectangular mask, (b) salt-pepper noise, (c) irregular mask. For each example,
the image on the left is the original image, the image in the centre has been corrupted by a mask while the one in the right is the reconstructed
image after inpainting.

Fig. 3: Performance of various loss functions presented on Open
Cities AI dataset. It can be observed that relatively better perfor-
mance is observed when the model is trained on all the losses.

4. CONCLUSION

We present a novel approach to tackle the problem of image
inpainting in remote sensing domain. Our approach builds
on the existing EdgeConnect model and strengthens it by in-
corporating attention mechanism and global GAN, that gives
realistic results by combining global and local features. Fur-
thermore, we incorporate multiple losses such as perceptual
loss and style loss, which further boost our model’s perfor-
mance. We evaluate our model on Open Cities AI and Earth
on Canvas datasets, where our approach gives competitive
results with respect to previous benchmarks. In future, we
would consider more semantically challenging datasets and
explore the problem in a multimodal scenario.

Acknowledgement

The authors would like to acknowledge the IITB-ISRO Grant
RD/0120-ISROC00-005.

5. REFERENCES

[1] Omar Elharrouss, Noor Almaadeed, Somaya Al-Maadeed, and Younes
Akbari, “Image inpainting: A review,” Neural Processing Letters, pp.
1–22, 2019.

[2] Junyu Dong, Ruiying Yin, Xin Sun, Qiong Li, Yuting Yang, and Xukun
Qin, “Inpainting of remote sensing SST images with deep convolu-
tional generative adversarial network,” IEEE Geoscience and Remote
Sensing Letters, vol. 16, no. 2, pp. 173–177, 2018.

[3] Yang Liu, Jinshan Pan, and Zhixun Su, “Deep blind image inpainting,”
2017.

[4] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew
Tao, and Bryan Catanzaro, “Image inpainting for irregular holes using
partial convolutions,” 2018.

[5] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Z. Qureshi, and Mehran
Ebrahimi, “Edgeconnect: Generative image inpainting with adversarial
edge learning,” 2019.

[6] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa, “Globally and
locally consistent image completion,” ACM Trans. Graph., vol. 36, no.
4, July 2017.

[7] S. M. Nadim Uddin and Yong Jung, “Global and local attention-based
free-form image inpainting,” Sensors, vol. 20, pp. 3204, 06 2020.

[8] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “Image style
transfer using convolutional neural networks,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423,
2016.

[9] Justin Johnson, Alexandre Alahi, and Li Fei-Fei, “Perceptual losses for
real-time style transfer and super-resolution,” 2016.

[10] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon,
“Cbam: Convolutional block attention module,” 2018.

[11] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias
Heinrich, Kazunari Misawa, Kensaku Mori, Steven McDonagh, Nils Y
Hammerla, Bernhard Kainz, Ben Glocker, and Daniel Rueckert, “At-
tention U-Net: Learning where to look for the pancreas,” 2018.

[12] Milind Naphade, Zheng Tang, Ming-Ching Chang, David C Anastasiu,
Anuj Sharma, Rama Chellappa, Shuo Wang, Pranamesh Chakraborty,
Tingting Huang, Jenq-Neng Hwang, et al., “The 2019 ai city chal-
lenge.,” in CVPR Workshops, 2019, pp. 452–460.

[13] Ushasi Chaudhuri, Biplab Banerjee, Avik Bhattacharya, and Mihai
Datcu, “A zero-shot sketch-based intermodal object retrieval scheme
for remote sensing images,” IEEE Geoscience and Remote Sensing
Letters, 2021.

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros, “Image-
to-image translation with conditional adversarial networks,” 2016.

[15] Suriya Singh, Anil Batra, Guan Pang, Lorenzo Torresani, Saikat Basu,
Manohar Paluri, and CV Jawahar, “Self-supervised feature learning for
semantic segmentation of overhead imagery.,” in BMVC, 2018, vol. 1,
p. 4.

[16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,
Alec Radford, and Xi Chen, “Improved techniques for training gans,”
2016.

[17] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz, “Loss functions
for neural networks for image processing,” 2015.

[18] Karen Simonyan and Andrew Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014.

[19] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.


	 Introduction
	 Model Description
	 Loss Functions

	 Experiments
	 Datasets
	 Protocol
	 Discussions and Critical Analysis
	 Effect of Loss Function


	 Conclusion
	 References

