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Abstract—With the aim of restoring high-quality image content
from its degraded version, image restoration has numerous
applications. Lately, convolutional neural networks (CNNs) have
achieved dramatic improvements over conventional approaches
for image restoration task. Existing CNN-based methods typi-
cally operate either on full-resolution or on progressively low-
resolution representations. In the former case, spatially precise
but contextually less robust results are achieved, while in the lat-
ter case, semantically reliable but spatially less accurate outputs
are generated. In this project, we study an architecture with the
collective goals of maintaining spatially precise high-resolution
representations through the entire network, and receiving strong
contextual information from the low-resolution representations.
We understand the functioning of the architecture and suggest
modifications which can be done to further improve the perfor-
mance depending on various use-cases.

Index Terms—Low Light Image Enhancement, MIRNET, Im-
age denoising

I. INTRODUCTION

The number of images produced in recent times is growing
humongously due to presence of cameras everywhere on
various devices. During image acquisition, degradation of
varying severity often gets captured along with. It happens due
to various reasons,some of them being physical limitations of
cameras or inappropriate lighting conditions and surrounding
environment. The art of recovering the original clean image
from its corrupted form is done under the image restoration
task.

In past decade, deep learning models have made revolu-
tionary advancements for image restoration and enhancement,
as they can learn strong and generalizable priors from large-
scale data sources. Presence of huge amount of data which
is growing exponentially and the increased computational
capability has made this possible.

Existing CNN models generally follow one out of the two
design frameworks: an encoder-decoder or a high-resolution
, single-scale feature extraction followed by processing.
The encoder-decoder models first sequentially map the
input to a low-resolution representation, and then apply a
gradual reverse mapping to the original resolution. Although
these approaches learn a broad context by spatial-resolution
reduction, the fine spatial details are often ignored, making
it hard to restore them in the later stages. On the other
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side, the high-resolution, single-scale networks do not use
any downsampling operation, and thus produce images with
spatially more accurate details,but less effective in encoding
contextual information due to their limited contextual field.

Image restoration is a position-sensitive process, where
pixel-to-pixel correspondence from the input to the output
is needed. Therefore, it is important to remove only the
undesired degraded image content, while carefully preserving
the desired fine spatial details like true edges and texture.
Such functionality for segregating the degraded content from
the true signal can be better incorporated into CNNs with the
help of large context, e.g., by enlarging the receptive field.

Towards this goal, we explore a new multi-scale approach
that maintains the original high-resolution features along the
network hierarchy, thus minimizing the loss of precise spatial
details. The multi-resolution parallel branches operate in a
method which is complementary to the main high-resolution
branch, thus providing us more precise and contextually
enriched feature representations. Comprehensive experiments
are performed on two real image benchmark datasets for
different image processing tasks including image denoising,
super-resolution and image enhancement, various tweaks and
modifications are made in the standard structure to explore
the possibility of improvement. Various Regularisation, types
of Normalisation and Optimization approaches are tested and
outcomes are recorded so that it can be modified in future as
per the use-casew to achieve the desired task.

II. BACKGROUND AND PREVIOUS WORK

With the rapid growth of image content, there is a need
to design effective image restoration and enhancement algo-
rithms. The approach used in this project processes features
at the original resolution in order to preserve spatial details,
while effectively fuses contextual information from multiple
parallel branches. Next, we briefly describe the representative
methods for each of the studied problems:

A. Image Denoising :

Classic denoising methods are often based on modifying
transform coefficients or averaging neighborhood pixels. Many
patch-based algorithms that exploit redundancy in images are



later developed. Recently, deep learning based approaches
make significant advances in image denoising, yielding favor-
able results than those of the hand-crafted methods.

B. Super-resolution (SR)

Currently, deep-learning techniques are actively being ex-
plored, as they give improved results over conventional algo-
rithms. The data-driven SR approaches differ according to their
architecture designs . In contrast to directly producing a latent
HR image, recent SR networks employ the residual learning
framework to learn the high-frequency image detail, which is
later added to the input LR image to produce the final resolved
result. Other networks designed to perform SR include dense
connections, attention mechanisms , multi-branch learning ,
and generative adversarial networks (GANs).

C. Image Enhancement

Often, cameras generate images that are less vivid with poor
contrast. For image enhancement, histogram equalization is the
most commonly used method. However, it frequently produces
under- or over-enhanced images. Recently, CNNs have been
successfully applied to general, as well as low-light, image
enhancement problems. Some popular CNN methods employ
Retinex-inspired networks, encoder-decoder networks , and
GANSs.

III. DATA AND METHODOLOGY

We used LOL Dataset for our experiments.The dataset is
composed of 500 low-light and normal-light image pairs and
divided into 485 training pairs and 15 testing pairs. Out of
485, we used 400 pairs for training and 85 for validation.
We used random cropping for data-augmentation and min-
max standardization for pre-processing.
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We use the standard MIR Net model as the broiler plate
model for our experimentation. Due to the complexity of
MIRNet and limited GPU usage in google colab we used 32
channels in each spatial scale in the MRB block instead of
64. We also reduced the original image size of 128 % 128 to
64 = 64 which decreases the training time significantly.

Pipeline Architecture Given an image I € R7*W*3 | the
network first applies a convolutional layer to extract low-
level features X, € R7*W*C Then, the feature maps X,
pass through N number of recursive residual groups, yielding
deep features X; € RE*W*C  We note that each RRG
contains several multi-scale residual blocks. Next, we apply
a convolution layer to deep features X, and obtain a residual
image R € R¥*W*3_ Finally, the restored image is obtained
asl =I+R.

In the primary stage we optimize the proposed network using

the Charbonnier loss :
LI, I*) =/ ||[I' = I*]]2 + ¢

where I* denotes the ground-truth image, and € is a constant

which we empirically set to 103 for all the experiments.

In further attempts towards improvement we also try to
analyse how SSIM loss optimization performs, SSIM loss
function is given by :
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Here , S}, contains local luminance and the second Sy local
covariance.



Multi-scale residual block, which is the fundamental build-
ing block of our method, containing several key elements:
(a) parallel multi-resolution convolution streams for extract-
ing (fine-to-coarse) semantically-richer and (coarse-tofine)
spatially-precise feature representations, (b) information ex-
change across multi-resolution streams, (c) attention-based
aggregation of features arriving from multiple streams, (d)
dual-attention units to capture contextual information in both
spatial and channel dimensions, and (e) residual resizing
modules to perform downsampling and upsampling operations.

IV. EXPERIMENTS AND RESULTS

First, we trained the original MIRNET architecture from
scratch upto 150 epochs with batch size of 4. For this, the
observed plot of Loss vs Epochs on the training and the
validation dataset was as follows:
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Fig. 1. Example of the corrected image

MIRNet Enhanced

Fig. 3. Example of the corrected image

Fig. 4. Example of the corrected image

We performed total 3 experiments by modifying the setup
of original MIRNET architecture
1) Modified model with Charbonnier loss
2) Modified model with L1 and L2 regularization and
Charbonnier loss
3) Modified model with L1 and L2 regularization and
SSIM(Structural Similarity Index) loss
For each experiments we trained upto 160 epochs with
batch size of 4. We experimented with different Learning
rate schedulers. ReduceLROnPlateau was observed to give
faster convergence than Exponential decay, Step decay and
Time-based decay.
We used Adam optimizer with learning rate of 0.0001. We
used two loss function for different experiments, Charbonnier
loss and SSIM loss(using SSIM metric as loss function)

B. Modified (4 spatial scales) MIRNET with Charbonnier Loss

For this experiment, the observed plot of Loss vs Epochs
on the training and the validation dataset was as follows:
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Loss vs Epochs for Modified MIRNET
We have used PSNR (Peak Signal to Noise Ratio) as metric
in all of the experiments. The plot of PSNR vs epochs for this
experiment was as follows:
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From these plots we can clearly see that the model is
overfitting. Hence we decided to add regularization to the
weights in MRB layer.

1) Modified MIRNET with L1 and L2 Regularization with
Charbonnier Loss: For this experiment, the observed plot of
Loss vs Epochs on the training and the validation dataset was
as follows:

The plot of PSNR vs epochs for this experiment was as
follows:

2) Modified MIRNET with L1 and L2 Regularization with
SSIM Loss: For this experiment, the observed plot of Loss
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Fig. 7. Loss vs Epochs for Modified MIRNET with Regualrization and using
SSIM Loss
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vs Epochs on the training and the validation dataset was as
follows:

The plot of PSNR vs epochs for this experiment was as
follows:

Experiment SSIM | PSNR | Charbonnier Loss
Original Model(3 spatial scales) | 0.1878 | 66.3162 0.1312
Modified(4 spatial scales) 0.2053 | 67.7935 0.1334
Modified+L1 and L2 0.1696 | 66.5710 0.1404
Modified+L1 and L2 +SSIM | 0.2158 | 67.7935 0.1304

Table 1

3) Visualising the Results Obtained: Now, we compare the
results obtained by training the model in the above mentioned
experiments. The resulting images are as follows:
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Fig. 10. Example of the corrected image
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Fig. 11. Example of the corrected image
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Fig. 12. Example of the corrected image

V. LEARNING, CONCLUSIONS, AND FUTURE WORK
A. Learning

Image-enhancement is one of the use-cases where batch
normalization gives negative results as visible in the inference
results. SSIM metric can be used as a loss function and it gives
better results better PSNR value than it alternative Charnnobier
loss. L1 and L2 regularization gives significant improvement
in the convergence of the model. This can be observed in the
Loss vs Epoch curve. Further, in PSNR vs Epoch, the gap
between training and validation is also reduced.

B. Conclusion

The experiment with modified model, SSIM loss and
regularization gives the best result. Hence SSIM loss
function selection was one of the essential output of this
project. The approach of different spatial scales in MRB unit
helps retain precise spatial details however negative affect
the contextualised representations. MIRNet enables to learn
relationhip between features within each branch of network as
well as across multiple scale branches, unlike prior models
which learns across multiple branches only. The choice of
number of spatial scales, however, does not affect much atleast
within 150 epochs.

C. Future Work

We can implement Weight Normalization in the bottleneck
MRB units for better convergence, since Batch normalization
failed to give positve results in this use-case. We can also
use a variation of the Haar Wavelets (Wavelet Transform)
for better multiresolution analysis. We can use custom loss
functions with attention parameters of different spatial scales
as we know that different types of images have different
proportion of high level and low level features, corresponding
to different scales. We can perform numerous experiment to
find the optimal number of MRB units, number of spatial
scales and other model architecture hyperparameters to find
the best architecture.
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